
Supporting Large-Scale Agile Development with
Domain-driven Design

Ömer Uludağ1, Matheus Hauder2, Martin Kleehaus1, Christina Schimpfle2,
and Florian Matthes1

1 Technische Universität München (TUM), D-85748, Garching bei München
{oemer.uludag,martin.kleehaus,matthes}@tum.de
2 Allianz Deutschland AG, D-85774, Unterföhring

{matheus.hauder,christina.schimpfle}@allianz.de

Abstract. An increasing number of large organizations are adopting
agile and lean methods at larger scale for building complex software sys-
tems. One major critique of agile development and in particular of large-
scale agile development is the neglect of proper architecting assistance
in such development efforts. On the one hand, emergent architecture
design may require excessive redesign efforts in large systems, while on
the other hand, big upfront architecture delays the starting point of im-
plementation. Domain-driven Design (DDD) addresses this problem by
providing means for evolving the architecture of complex systems in an
agile way. We describe how DDD can support large-scale agile develop-
ment based on a conducted case study in a large insurance company with
three agile teams. Furthermore, we present a lightweight framework that
can be used by agile teams as guidance for architecting in large-scale
agile development programs. The presented framework is largely based
on Large-Scale Scrum and incorporates strategic and tactical DDD.

Key words: large-scale agile software development, domain-driven de-
sign, scaling agile frameworks

1 Introduction

Over the past two decades, agile methods have transformed and brought un-
precedented changes to software development practice by strongly emphasizing
change tolerance, continuous delivery, and customer involvement [1]. The success
of agile methods for small, co-located teams has inspired enterprises to increas-
ingly apply agile practices to large-scale endeavors [2]. One major critique of agile
development and in particular of large-scale agile development is the lack of as-
sistance for building and managing architecture in such development endeavors
[2, 3]. On the one hand, agile teams näıvely hope that a suitable architecture
will gradually emerge out of weekly refactorings [4]. However, the practice of
this design is effective at team level, but insufficient when developing complex
systems. It requires excessive redesign efforts, architectural divergence, and func-
tional redundancy increasing the complexity of the system’s architecture [5, 6].

{oemer.uludag,martin.kleehaus,matthes}@tum.de
{matheus.hauder,christina.schimpfle}@allianz.de


2 Ömer Uludağ et al.

On the other hand, large ”big design upfront” efforts delay the starting point of
implementation [7]. The planned architecture might not be contemporary after
it meets the ”real world” [5].

Large-Scale Scrum (LeSS), Scaled Agile Framework (SAFe), and Disciplined
Agile Framework 2.0 (DA 2.0) [8], suggest to apply Domain-driven Design (DDD)
to architect in an agile way. However, so far, no real-world example exists which
describes how to combine and implement scaling agile frameworks with DDD.
The main objective of this paper is to explore how DDD can be utilized in
order to support large-scale agile development. Based on this objective our three
research questions are:

– Research Question 1: Which scaling agile frameworks reference DDD?
– Research Question 2: How can DDD be adopted in a large organization with
several agile development teams?

– Research Question 3: Which roles, processes, artifacts, and tools are required
to support a large-scale agile development endeavor with DDD?

The remainder of this paper is structured as follows. In Section 2, we motivate
the need of architecting in large-scale agile development and provide an overview
of related works. In Section 3, we present the research approach of this paper.
Section 4 describes the case study on the adoption of DDD in the insurance
company. Section 5 presents the evaluation results of the proposed framework.
We discuss the main findings in Section 6 before concluding the paper with a
summary of our results and remarks on future research in Section 7.

2 Background and Related Work

Agile methods such as Scrum, Extreme Programming (XP), and Crystal Clear,
which more or less adhere to the values of the Agile Manifesto1 [9], share com-
mon characteristics, such as iterative and incremental development life cycles,
focusing on small releases, collocated teams, and a planning strategy based on
a release plan or feature backlog [10] where architectural design issues are not
very important [11]. For instance, the incremental design practice of XP claims
that architecture can emerge in daily design (emergent design) [12], which im-
plies that architecture emerges from the system rather being imposed by some
direct structuring force [11]. Apart from verbal discussions related to design
decisions and overall architecture, also Scrum does not place any emphasis on
architecture related practices. In Scrum, the architecture of one-project appli-
cation can always be re-factored and repackaged for a higher level of reuse [11].
While ”refactoring, for its part, has emerged as an important software engineer-
ing technique, it is not a replacement for sound upfront design; if an architecture
is decent you can improve it, but re-factored junk is still junk” [13].

However, the role of architecture in agile endeavors has changed and it is now
gaining more attraction by agilists [14]. This phenomenon is also reinforced by

1 http://agilemanifesto.org/, last accessed on: 2018-01-18



Large-Scale Agile Development with Domain-driven Design 3

the increasing number of ”agility and architecture can coexist” advocates cf. [3],
[4], or [15]. For building complex and large-scale systems, some amount of archi-
tectural planning and governance becomes even more important [16]. Nord et al.
[4] argue that for large-scale software development endeavors, agility is enabled
by architecture, and vice versa. They highlight some benefits of architecture in
large-scale agile efforts such as providing a common vocabulary and culture, a
systematic way to control dependencies, a way to keep technical debts in check,
and a guide for release planning and configuration management [4].

Some architectural tactics or models to support rapid and agile stability in
large-scale agile endeavors have been proposed by academics such as aligning
feature-based development and system decomposition, creating an architectural
runway, using matrix teams, or the zipper model [15, 16, 17]. Also, practitioners
are grappling with the issue of marrying agile approaches with architectural prac-
tices for building complex systems such as Cockburn and his walking skeleton
[18], Leffingwell and his colleagues’ SAFe [19], or Ambler and his colleagues’ DA
2.0 [20]. Recognizing the importance of architecting in large-scale agile endeav-
ors, we have investigated the role of architects based on a structured literature
review with an excerpt in Table 1 [8].

Table 1. Excerpt of scaling agile frameworks maturity and architecture [8].

C
on

tri
bu

tio
ns

C
as

es

D
oc

um
en

ta
tio

n

Tr
ai

ni
ng

 C
ou

rs
es

 a
nd

 
C

er
tif

ic
at

io
ns

C
om

m
un

ity
, F

or
um

 o
r 

B
lo

g

R
at

in
g

En
te

rp
ris

e 
A

rc
hi

te
ct

So
ftw

ar
e 

A
rc

hi
te

ct

So
lu

tio
n 

A
rc

hi
te

ct

In
fo

rm
at

io
n 

A
rc

hi
te

ct

D
om

ai
n-

D
riv

en
 D

es
ig

n

A
rc

hi
te

cu
re

 D
es

ig
n

Large Scale Scrum 29 22 Yes Yes Yes - - - - X emergent

Scaled Agile Framework 35 35 Yes Yes Yes X X X X X
emergent & 
intentional

Disciplined Agile 2.0 27 4 Yes Yes Yes X X X - X
emergent & 
intentional

Maturity Architecture

Given that architecting should be an iterative activity, we found that mature
scaling agile frameworks [8] suggest DDD as a light-weight approach for large-
scale agile efforts. DDD facilitates an iterative process of collaboration to explore
a model and develop a ubiquitous language between agile teams and domain
experts. Although, DDD has been proposed by these frameworks, to the best of
our knowledge, there is no other work that describes the adoption of DDD in
real large-scale agile development program.



4 Ömer Uludağ et al.

3 Case Study Design

A case study is a suitable research methodology for software engineering research
since it studies contemporary phenomena in its natural context [21]. It is a
valuable research method in situations where a researcher aims to understand
phenomena in a complex, real life context [22, 23]. We followed the guidelines
described by Runeson and Höst [21] for the research process.

Case study design: Main objective of this paper is to explore how DDD
can be utilized in order to support large-scale agile development. Based on this
objective, we defined three research questions (see Section 1). Our study is a
single-case study and the case was purposefully selected, because the studied
company had been experimenting with agile approaches for the last two years
and is now transitioning from planned-driven methodology to large-scale agile
development. Our case is exploratory as we are looking into an unexplored phe-
nomenon [21]. Our unit of analysis is the large-scale agile development endeavor
at the large insurance company.

Preparation for data collection: We used a ”mixed methods” approach
with three levels of data collection techniques according to [24]:

1. As direct methods, we made observations with high degree of interactions
[21] in several event storming workshops [25] and conducted structured in-
terviews. The workshops helped us to develop a deep understanding of the
overall structure of the development endeavor with its roles, process, arti-
facts, and tools. We interviewed nine stakeholders involved in the develop-
ment effort with different roles in order to enable the triangulation of data
sources [26]. The structured interviews helped us to evaluate our framework
and incorporate feedback into the final version of it.

2. In the issue tracking tool Jira2, agile teams assigned user stories to domains
and subdomains. This user story assignment provided us quantitative data
for determining in which subdomains the different teams on the program are
working on.

3. The collaboration tool Confluence3 provided us wikis with detailed infor-
mation on logical architecture models and documentations. We used it as a
complementary source of information.

Analysis of collected data: The quantitative data of the user story assign-
ment was analyzed by using descriptive statistics. The Likert-scale data of the
structured interviews were coded, which then were used to calculate the mean
for each question per stakeholder group. Workshop protocols and wikis were an-
alyzed and information was clustered utilizing open coding [27]. After the initial
coding, we looked at groups of code phrases and merged them into concepts. Sub-
sequently, we related the concepts to our formulated research questions. Finally,
the main findings were incorporated in a framework.

2 https://www.atlassian.com/software/jira, last accessed on: 2018-01-18
3 https://www.atlassian.com/software/confluence, last accessed on: 2018-01-18



Large-Scale Agile Development with Domain-driven Design 5

4 Applying Domain-Driven Design in Large-Scale Agile
Development

4.1 Case Description

This paper comprises the result of a case study conducted 2017 in a large insur-
ance company. The involved interview partners form a unit with three agile teams
with two to eight developers developing with other teams an integrated sales
platform for several distribution channels. The agile teams are cross-functional
including employees from the IT department as well as from business domains
and coexist next to many other teams that use waterfall methodologies for soft-
ware development. This agile unit primarily focuses on the development of its
particular product, without being distracted by other external tasks. For that
reason, they are co-located at another location of the company. As agile method-
ologies were not commonly used in the company before, the agile teams received
training concerning agile methodologies before the program begins and during
the development process. The agile based product development has started two
years ago and is not finished yet.

It is required that all teams adopt the same lean and agile based methodol-
ogy which is basically LeSS extended by some XP practices. This methodology
tailored for the insurance company was created with assistance of the company
Pivotal that provided know-how on lean startup and agile principles [28]. The
most essential feature added to the Scrum methodology is the development and
release of Minimum Viable Products (MVP). Prototypes are used to validate
proof of concepts. An MVP already represents a finished product that includes
only minimal features. An MVP is released very early in the development process
in order to incorporate and adapt customer feedback [29]. After having released
a first MVP after 100 days, the team extends the MVP gradually with further
functions.

4.2 Framework

In the following, we will describe the large-scale agile development endeavor of
the insurance organization along the tiers, roles, processes, artifacts, and tools
of our proposed framework (see Figure 1).

Strategic Domain-driven Design: Determines in which subdomains the
different teams work. This is achieved by assigning all user stories of all teams to
the subdomain they belong to. An overview of all domains and their subdomains
was created by an enterprise architect (EA) before applying the defined frame-
work. However, the overview of the domains can be adapted in the course of the
process, e.g., in case completely new features are implemented. The assignment
is conducted by the teams themselves and is continuously evaluated through
an enterprise architecture management (EAM). The results support decisions of
program managers (PM) and product owners (PO), e.g., to determine whether
the teams have overlapping requirements. Ideally, there is little overlap between
the domains and subdomains to reduce dependencies across the teams.



6 Ömer Uludağ et al.

Large-scale agile development process: It is the central part of the
framework, which is the main process of all teams. It is enriched by DDD prac-
tices. During the development process, all teams provide input to the DDD
processes. Based on their inputs teams can also profit from the results of the
incorporated DDD approaches. The development process in the framework in-
corporates many elements as defined by LeSS. LeSS is considered to fit best in
those challenges where the number of teams is still manageable, but likely to
increase in the near future. LeSS incorporates agile modeling approaches which
can be easily connected to DDD. Additionally, LeSS suggests to have a single
PO and a single product backlog for all teams. This is crucial for product quality
and dealing with overarching functions.

Tactical Domain-driven Design: It describes how agile teams can use
the DDD approach to contribute to their own development process. The cen-
tral element of tactical DDD is the domain model which serves as ubiquitous
language in each team individually. All input for the domain model comes from
the respective team, while the EA mainly provide methodological guidance, e.g.,
as facilitator. The domain models are continuously improved throughout within
entire development process. For evolving the domain model, agile modeling tech-
niques, such as event storming workshops, are used. Each agile team defines, uses,
and evolves its own domain model.

Roles: Our framework proposes program managers (PM) and enterprise ar-
chitects (EA) in addition to developers, a scrum master (SM), and a single PO.
The developers are organized in three agile teams. The teams are self-managing,
co-located and long-lived. The teams clarify, implement, and test user stories.
The role of the SM is not depicted explicitly in our framework, as the SM role
correspondents to the SM role in Scrum. Each team has an own SM who has
no specified inter-team responsibilities. Within our framework, one PO is re-
sponsible for all agile teams. The PO manages the single product backlog. This
especially includes prioritization of user stories and assignment of them in coop-
eration with representatives from all teams to the most suitable team. The PO
acts as a connector between teams, customers, and higher-level management
being in continuous exchange with the PMs. The PO communicates with all
teams continuously and is aware of team dependencies. The PO advises the PM
concerning organizational structures and suggests to reorganize teams. The PM
mostly use the input from strategic DDD for strategic decisions, e.g., determin-
ing the organizational structure and deciding if additional teams are necessary
for the overall program. PM only take part in strategic DDD and participate in
higher level workshops in order to detect overarching functions which are to be
implemented within the program. The EA provides methodological guidance to
teams. On a strategic level, the EA gives an overview of domains and subdomains
to the team. This includes a first draft of the overview as well as coaching the
team on how to use this artifact. The EA evolves the domain overview consid-
ering the input from the teams and is responsible that the overview is adapted
accordingly in all tools. The EA supports teams with the continuous user story
assignment and presents its results comprehensively to the PO and PMs.



L
a
rg

e-S
ca

le
A

g
ile

D
ev

elo
p
m

en
t

w
ith

D
o
m

a
in

-d
riv

en
D

esig
n

7

Ta
ct

ic
al

D
D

D

Roles

Product Owner

Team 1

Team 2

Team 3

Enterprise Arch.

Project Man.

Representatives

of teams & PO

Sprint Planning Overall
Review

Retrospective
Sprint

La
rg

e-
Sc

al
e

A
gi

le
 

D
ev

el
op

m
en

t P
ro

ce
ss

St
ra

te
gi

c 
D

D
D

Overview of (Sub-) Domains Continuous Results

Daily Scrum

E
ve

nt
S

to
rm

in
g

E
ve

nt
S

to
rm

in
g

E
ve

nt
S

to
rm

in
g

Team Room

Strategic Decision Making

Domain Models

Sp
rin

t B
ac

kl
og

Pr
od

uc
tB

ac
kl

og

OverallTeam

Artifacts

Event
Storming

Domain Models 
evolve over time

Draft Evaluate
Provide

Input

As
si

gn
 U

se
r 

St
or

ie
s

Ad
ap

t 
(s

ub
-)

do
m

ai
ns

Customers & 
Stakeholders

Team

Overall

Team

Overall TeamOverall

Process …

Events

Tools
Issue Tracking

Team Wiki

EAM Tool

U
se

and
provide

inform
ation

Next
iteration

Key Use
Cases

Logic
Architecture

ISSUE

ISSUE

WIKI

EAM

WIKI

WIKI

WIKI

ISSUE ISSUEISSUE

ISSUE

ISSUE

EAM
WIKI

WIKIEAMEAM

Team Room

Team Room

Fig. 1. Overall framework for supporting large-scale agile development with Domain-driven Design.



8 Ömer Uludağ et al.

The EA has no decision-making authority, but provides input to decisions. On a
tactical level, the EA introduces the method of event storming as well as domain
modeling to the teams. The EA is the moderator in all event storming workshops
and teaches the teams how the event storming approach works and how they
can incorporate the domain model in their development process in a way that
provides value to the teams in terms of reaching a common understanding and
defining an own ubiquitous language. The EA optionally participates in team
backlog refinements or team retrospectives to help with keeping the domain
model up-to-date. Also, the EA supports teams with their continuous domain
modeling.

Events: They consist of four types: traditional Scrum events, large-scale agile
events, DDD events, and the Sprint itself. The traditional Scrum events com-
prises the intra-team events, namely sprint planning, backlog refinement, daily
Scrum, and retrospective. The large-scale agile events consist of overall sprint
planning, backlog refinement, daily scrum, retrospective, and review events. The
PO and representatives from all teams participate in all inter-team events. This
allows the PO in the framework to communicate with all teams continuously
and in parallel. These meetings especially allow discussions about dependencies
and responsibilities of the teams. The DDD events include the continuous user
story assignment and evaluation, and strategic decision making on the strate-
gic DDD level. The event storming workshops takes place on the tactical DDD
level. The continuous user story assignment and evaluation serves to determine a
suitable organizational structure in line with the DDD approach. The goal is to
have teams that are working in one bounded context within one subdomain. The
strategic decision making in the framework is done by the PO and PMs. Here,
they are mostly concerned about the organizational structure of the teams. This
comprises not only potentially restructuring of existing teams, but also decid-
ing about the responsibilities as soon a new team is added. The event storming
workshop supports exploration of complex business domains with domain mod-
els starting with domain events as their most crucial part. It allows to come up
with a comprehensive model of the business flow in a domain by bringing domain
experts and developers together in a room to build a model collaboratively. The
approach is in line with DDD, as it helps to determine bounded contexts and
aggregates quickly. It has a very easy and intuitive notation that all participants
can understand. The event storming workshops create an atmosphere for discus-
sions about the business logic. In the case study, event storming is regarded as
a first step towards defining a domain model with the central concept of events.

LeSS suggests to synchronize the sprints for all teams. This means the same
sprint length as well as sprint start and end. Here a sprint length of one to two
weeks is suggested.

Artifacts: Essential to the framework are different artifacts which are used
and created in the process. While on the strategic DDD level, the overview of the
subdomain as well as the results of the user story assignment are essential, on
the tactical DDD level the domain models are the central artifacts. User stories,
product and sprint backlog are very essential in the strategic DDD as well as in



Large-Scale Agile Development with Domain-driven Design 9

the development process. It makes sense for the teams to define key use cases
and to document the logic architecture. The logic architecture models provides
a rough sketch of the entire system. Key use cases can be used to understand
what a typical user expects from a system, how a user interacts with the systems
and benefits from it.

Tools: The agile teams use Jira to manage the product backlog. In order
to document which domain and subdomains are affected by a user story, a new
field called ”Affected Domain” has been added to Jira (see Figure 2).

Fig. 2. Example of assigning domains and subdomains to user stories.

Further application of the framework requires a team collaboration software
and a wiki. In the case study, the agile teams utilize Confluence as a knowledge
base for collaboration and documentations. All teams have established a wiki for
their documentations. Each team has its own wiki space. An overarching wiki
space is also present. The overarching space includes among others documen-
tation on strategic and tactical DDD as well as documentation of the overview
of domains and subdomains. Most importantly, on one page the event storming
method is explained and a picture of the current domain for the correspond-
ing team is included. All former versions of the domain model are included to
document its development over time. Additionally, an Enterprise Architecture
Management (EAM) tool is necessary to be able to automate the evaluation of
the user story assignment. The EA uses the EAM tool Iteraplan. It facilitates the
automation of the evaluation of the user story assignment. The user stories with
assigned domains and subdomains can be imported from Jira in order to build
figures, e.g., nesting cluster graphics, which visualize subdomains and teams



10 Ömer Uludağ et al.

working on them with (sub-)domains colored depending on their total number
of user stories. PM can use Iteraplan’s figures for strategic decision making.

5 Evaluation

In order to evaluate the defined framework, we conducted interviews with nine
persons in the insurance company of which four are part of an agile team. The
other interview partners work in roles that frequently interact with agile teams.
The interviewees were two PM (PM1, PM2), one scrum master (SM), two busi-
ness analysts (BA1, BA2), one PO, one department head of sales processes and
applications (DH), one lead EA, and one domain architect (DA). Interview part-
ners were not only asked if they agree or disagree to a statement, but also for
the reasons for their choice. Figure 3 shows the statements and the respective
degree of agreement by the interviewees.

Strategic Domain-driven Design: The evaluation of the Strategic DDD
component includes the user story assignment and interview results. In total,
425 stories were assigned by three teams. User stories purely concerned with UI
design and technical issues - around 35% - have not been assigned as they do not
belong to any business subdomain. Nearly 58% were assigned unambiguously to
a business subdomain. Only 3% of user stories were either very difficult to assign
meaning that no suitable subdomain was defined yet. 4% of the user stories were
assigned to more than one subdomain which is caused by a very broad scope of
user stories. This can be prevented by dividing the respective stories focusing
on functional requirements of only one subdomain. According to the interview
results, the agile teams themselves have not profited extensively from the user
story assignment so far. However, the architects, PMs, and PO evaluated the
assignment of user stories as more beneficial. The PO considered that the result
of the user story assignment proved correct about the overarching subdomains
his team works in. DH, PM1 and PM2 confirmed that the results show the core
focus of each team as well as overarching functions that need to be discussed with
different teams. Further, they state that results can be a valid basis to restructure
teams and their responsibilities. The SM stated that making benefits of such a
method clearer to agile team members help them to profit from the user story
assignment in the future. This could include providing the results continuously
on a wiki page accessible by all involved persons.

Tactical Domain-driven Design: Evolving own domains models for each
team starting with event storming workshops reveals a very high agreement
among all interview partners. The model helps the teams to reach a common
understanding of the business logic in its domain and serves as a shared language
for all team members - developers and business experts (DA, PO, EA). SM
regarded domain models as very helpful to detect which functionality could be
added next and as a tool to discuss how the logic changes. DA mentioned that in
the future this domain model has to be found in the code as a representation of
the business logic. However, PM1 mentioned that this might make more sense in
the future when the teams are structured based on subdomains. In general, the



Large-Scale Agile Development with Domain-driven Design 11

Agile Teams Architects/PMs

I strongly
agree

I strongly
disagree

I strongly
agree

I strongly
disagree

I strongly
agree

I strongly
disagree

I strongly
agree

I strongly
disagree

I strongly
agree

I strongly
disagree

I strongly
agree

I strongly
disagree

I strongly
agree

I strongly
disagree

I strongly
agree

I strongly
disagree

I strongly
agree

I strongly
disagree

I strongly
agree

I strongly
disagree

I strongly
agree

I strongly
disagree

Question 1: It is beneficial to further assign user 
stories and to evaluate the assignment continuously

Question 2: It is beneficial to provide the continuous 
results of the user story assignment to all involved 
persons on a wiki page

Question 3: It is beneficial if each teams creates and 
evolves its own domain model

Question 5: It is beneficial if teams with dependencies 
compare their domain models in a workshops

Question 6: The effort for the teams to integrate the 
strategic and tactical DDD component in the 
development process is high

Question 7: It is beneficial to synchronize the sprints of 
teams with dependencies

Question 8: It is beneficial if teams with dependencies 
share a single backlog

Question 9: It is beneficial if teams with dependencies 
are managed by a single product owner

Question 10: It is beneficial if teams use the defined 
artifacts, such as domain model and user story 
assignment results, in the overarching events

Question 11: It is beneficial if architects support the 
agile teams as described by the framework

Question 4: It is beneficial to use the event storming 
method to create a first draft of a domain model

Agile	Team
s

Architects/PM
s

Fig. 3. Evaluation results of the proposed framework.

team members who participated in the event storming workshops were convinced
that the method is helpful. Advantages of the method are that it is very simple
(PO, AM), that it creates a good atmosphere for open discussions (BA2, EA),
that its focus is on business events and logic (BA2) and helps to find aggregates
and (sub-)domain boundaries (PM1). According to DA, focusing on business
logic before addressing technical issues is helpful. Comparing domain models
between teams is considered beneficial to determine boundaries of each teams
work (BA2), to reach a common understanding of the business logic and where
interfaces between the applications are required as well as to define a published



12 Ömer Uludağ et al.

language (DH). However, this approach can increase the need for cross-team
coordination and communication (EA, BA1). Further, this might not be desired
by the teams as they are supposed to reach their own goals and therefore their
interests in common goals and overall architecture might not be given (AM).
According to DA, the EA’s responsibility is to compare domain models and to
detect challenges that might occur. An EA could contact the affected teams and
bring them together to discuss and decide on the detected issues. These results
were also observed in the event storming workshops.

Large-Scale Agile Development Process: The effort for the integration
of the strategic and tactical DDD components was assessed neither as low nor
high. Team members who participated in the assignment and the workshops
assessed efforts higher. As this component of the framework has not been oper-
ationalized yet, further questions concerned the development process in general.
The opinions differ if synchronizing sprints, sharing a single backlog and a sin-
gle PO is beneficial. Some interviewees argued that actually no dependencies
should exist and continuous delivery and integration would make such means
unnecessary (PM2, BA2, DA). However, other interviewees stated that with
similar complexity, using components of scaling agile frameworks could enhance
transparency and focus on common goals (EA, PM1). A single PO supports
overarching prioritization of user stories (AM, EA), but if the agile teams are
inexperienced it might be too much work for one person (PO, DH, PM2).
Concluding, the use of the defined artifacts, such as domain models and user
story assignment results, was considered as helpful and especially support of ag-
ile teams by architects has been seen as very beneficial by all interview partners.
According to DH, architects play a central role for making overarching strategic
considerations, e.g., concerning team structure (PO, BA1, BA2). Others consid-
ered architects also as coaches for new methodologies, such as DDD and event
storming (PM1, AM, BA2).

6 Discussion

Key findings: After working independently from all architectural governance,
the agile teams and PM conceived that without any form of architectural guid-
ance large agile programs can hardly be successful. Therefore, one of the key
findings is that agile teams, as soon as there are several of them on a pro-
gram, need to be supported by EA having an overview of the teams and the
applications they develop. Many challenges arise which cannot be addressed by
single teams, but need to be addressed with overarching methods driven by
overarching roles within the organization. Especially, combining large-scale agile
practices and DDD can address various challenges. While scaling agile frame-
works support cross-team coordination and communication, they lack detailed
advice on how to do architecting in large scale agile programs. DDD provides
basic concepts for the architecture that can be beneficial not only to the agile
teams, but the program overall. Architectural activities in agile programs earlier
were not accepted by agile teams who wanted to work independently. However,



Large-Scale Agile Development with Domain-driven Design 13

if architects are capable of providing apparent value to the agile teams, they
appreciate architectural support. The same applies for PM and other decision
makers. To be able to demonstrate value quickly to both decision makers and
agile teams, we recommend starting with both strategic and tactical DDD at the
same time. Decision makers will profit soon from the strategic DDD, while agile
teams profit mostly from the tactical component. The framework shows how to
combine large-scale agile development and DDD in a light-weight manner.

Threats to validity: We discuss potential threats to validity using Rune-
son and Höst’s [21] criteria for assessing the validity of case studies. The first
criterion is construct validity. It reflects to what extent the operational mea-
sures that are studied really represent what the researcher has in mind, and
what is investigated according to the research questions. To address this aspect,
we interviewed multiple persons with different roles and attended various event
storming workshops. The interviews and workshop protocols were coded and
analyzed. We also applied a ”mixed methods” approach as we gathered data
through direct observations, structured interviews, and various software tools.
Another potential concern is that of internal validity, which is not relevant,
as this research was neither explanatory nor causal [21]. A third criterion is ex-
ternal validity, i.e. to what extent it is possible to generalize the findings. We
focus on analytical generalization [21] by providing a thorough description of
the case. Particularly, our case study provides empirical insights that allow for a
profound understanding of this insurance organization’s large-scale agile devel-
opment endeavor. The presented findings should be viewed as valuable insights
for other organizations interested in supporting large-scale agile development
efforts with DDD. Runeson and Höst’s [21] last criterion is reliability. It is
concerned with to what extent the data and the analysis are dependent on the
specific researcher. To mitigate this threat, the study has been designed so that
data was collected from different sources.

7 Conclusion and Future Work

The success of agile methods for small, co-located teams has inspired organiza-
tions to increasingly apply agile practices to large-scale endeavors [2]. However,
large organizations face challenges when scaling agility such as inter-team coordi-
nation, dependencies on other programs, and lack of clearly defined requirements
[30]. Especially, a lacking definition of architecture causes problems when adopt-
ing agile methods. Agile methods do not provide guidance on architecture, but
assume that it emerges with each iteration and continuous re-factoring. This can
be problematic as soon as complex systems are built by many teams. Some gov-
ernance and architectural planning is required to define work coordination and
to develop reliable and scalable systems [2, 16]. DDD encourages an iterative
and collaborative process for evolving architecture in an agile way.

Our case study provides a detailed description of how DDD can support large-
scale agile development. The findings indicate that it is easier to gain traction
of decision makers and agile teams at first by demonstrating the value of DDD.



14 Ömer Uludağ et al.

Our findings show that agile teams need some form of architectural guidance
and support by EA having a holistic overview of the teams and the applications
they develop. Stakeholders involved in the large-scale agile program appreciate
that architects not only coach the teams concerning new methods, but also
support them in application and exploitation. Our proposed approach fostered
the acceptance of architectural thinking of agile teams. It helped them to realize
the benefits of architecting, thus, encouraging their intrinsic motivation. Our
study contributes to the growing knowledge base on supporting large-scale agile
software development with EA.

We will continue to study the case organization as the large-scale agile devel-
opment effort becomes more mature and the presented framework will be further
operationalized. In addition, we plan to study the collaboration between EA and
agile teams in other large organizations that are pursuing large-scale agile devel-
opment endeavors. Also, we are interested in identifying recurring stakeholder
concerns and beneficial practices.

References

1. T. Dingsøyr, S. Nerur, V. Balijepally, and N. B. Moe, “A decade of agile method-
ologies: Towards explaining agile software development,” 2012.

2. T. Dingsøyr and N. B. Moe, “Towards principles of large-scale agile development,”
in International Conference on Agile Software Development. Springer, 2014, pp.
1–8.

3. D. Rost, B. Weitzel, M. Naab, T. Lenhart, and H. Schmitt, “Distilling best practices
for agile development from architecture methodology,” in European Conference on
Software Architecture. Springer, 2015, pp. 259–267.

4. R. L. Nord, I. Ozkaya, and P. Kruchten, “Agile in distress: Architecture to the
rescue,” in International Conference on Agile Software Development. Springer,
2014, pp. 43–57.

5. “Agile architecture,” http://www.scaledagileframework.com/agile-architecture/,
accessed: 2017-11-22.

6. M. Mocker, “What is complex about 273 applications? untangling application ar-
chitecture complexity in a case of european investment banking,” in System Sci-
ences, 2009. HICSS’09. 42nd Hawaii International Conference on. IEEE, 2009,
pp. 1–14.

7. R. L. Nord, I. Ozkaya, and R. S. Sangwan, “Making architecture visible to improve
flow management in lean software development,” IEEE software, vol. 29, no. 5, pp.
33–39, 2012.

8. Ö. Uludağ, M. Kleehaus, X. Xu, and F. Matthes, “Investigating the role of ar-
chitects in scaling agile frameworks,” in Enterprise Distributed Object Computing
Conference (EDOC), 2017 IEEE 21st International. IEEE, 2017, pp. 123–132.

9. P. Abrahamsson, M. A. Babar, and P. Kruchten, “Agility and architecture: Can
they coexist?” IEEE Software, vol. 27, no. 2, 2010.

10. S. Augustine, Managing agile projects. Prentice Hall PTR, 2005.

http://www.scaledagileframework.com/agile-architecture/


Large-Scale Agile Development with Domain-driven Design 15

11. M. A. Babar, “An exploratory study of architectural practices and challenges in
using agile software development approaches,” in Software Architecture, 2009 &
European Conference on Software Architecture. WICSA/ECSA 2009. Joint Work-
ing IEEE/IFIP Conference on. IEEE, 2009, pp. 81–90.

12. K. Beck, Extreme programming explained: embrace change. addison-wesley pro-
fessional, 2000.

13. B. Meyer, Agile!: The Good, the Hype and the Ugly. Springer Science & Business
Media, 2014.

14. S. Freudenberg and H. Sharp, “The top 10 burning research questions from prac-
titioners,” Ieee Software, vol. 27, no. 5, pp. 8–9, 2010.

15. S. Bellomo, P. Kruchten, R. L. Nord, and I. Ozkaya, “How to agilely architect an
agile architecture,” Cutter IT Journal, vol. 27, no. 2, pp. 12–17, 2014.

16. D. Leffingwell, R. Martens, and M. Zamora, “Principles of agile architecture,”
Leffingwell, LLC. and Rally Software Development Corp, 2008.

17. F. Buchmann, R. L. Nord, and I. Ozakaya, “Architectural tactics to support rapid
and agile stability,” Carnegie-Mellon Univ Pittsburgh PA Software Engineering
Inst, Tech. Rep., 2012.

18. A. Cockburn, Crystal clear: a human-powered methodology for small teams. Pear-
son Education, 2004.

19. “Scaled agile framework,” http://www.scaledagileframework.com/, accessed: 2017-
12-05.

20. “The disciplined agile (da) framework,” http://www.disciplinedagiledelivery.com/,
accessed: 2017-12-05.

21. P. Runeson and M. Höst, “Guidelines for conducting and reporting case study
research in software engineering,” Empirical Software Engineering, vol. 14, no. 2,
p. 131, Dec 2008. [Online]. Available: https://doi.org/10.1007/s10664-008-9102-8

22. I. Benbasat, D. K. Goldstein, and M. Mead, “The case research strategy in studies
of information systems,” MIS quarterly, pp. 369–386, 1987.

23. R. K. Yin, Case study research: Design and methods. Sage publications, 2013.

24. T. C. Lethbridge, S. E. Sim, and J. Singer, “Studying software engineers: Data
collection techniques for software field studies,” Empirical software engineering,
vol. 10, no. 3, pp. 311–341, 2005.

25. A. Brandolini, Introducing EventStorming: An act of Deliberate Collective Learn-
ing. Leanpub, 2017.

26. R. E. Stake, The art of case study research. Sage, 1995.

27. M. B. Miles, A. M. Huberman, and J. Saldana, “Qualitative data analysis: A
methods sourcebook,” Sage Publications Ltd (CA), 2014.

28. I. Pivotal Software, “Pivotal labs,” https://pivotal.io/labs, 2017.

29. D. Rancic Moogk, “Minimum viable product and the importance of experimenta-
tion in technology startups,” http://timreview.ca/article/535, 2012.

30. M. Paasivaara and C. Lassenius, “Scaling scrum in a large globally distributed
organization: A case study,” in 2016 IEEE 11th International Conference on Global
Software Engineering (ICGSE), Aug 2016, pp. 74–83.

http://www.scaledagileframework.com/
http://www.disciplinedagiledelivery.com/
https://doi.org/10.1007/s10664-008-9102-8
https://pivotal.io/labs
http://timreview.ca/article/535

